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In architectural design, profound changes to the nature 
of design instrumentations are challenging firmly-held 
assumptions about the relationship between the design 
ideation and its representation.  For centuries, hand-drawn 
representations have been used to facilitate the cognitive 
dialogue; bridging the gap between the internal mental 
images and the external physical world. Today, archi-
tectural discourse is rapidly embracing digital mediums, 
through which designs are conceived and communicated 
via controlled digital lenses. While these digital environ-
ments offer multitude of creative spheres for exploration, 
the change from atoms to bits is shaping new ways of think-
ing and making while forcing a higher degree of imbedded 
submission to the tool’s logic. Unfortunately, the role that 
digital instrumentations play in conforming our physical, 
virtual and perceptual realities is rarely at the center of 
investigation. It is therefore critical to look behind the 
digital interface and to unmask what is redefining design 
reasoning patterns within architectural discourse. To con-
tribute to this critical discussion, this paper investigates the 
operating logic, graphic platforms and geometric principles 
behind most of the commonly used digital software in 
architecture today. This survey shows that the overwhelm-
ing majority of digital tools utilize the same programming 
and graphical platforms, which raises critical questions 
about the level of imbedded conformity. Most critically, 
the geometric concepts used in shaping the contemporary 
language of architecture are chiefly derived by the abilities 
and limitations of the software itself and rarely substanti-
ated by architectural theory or intellectual discourse, in 
which the human consideration is largely missing.

INTRODUCTION
Throughout history the intimate relationship between the 
craftsman hand, the instrument and the medium has always 
been in constant negotiations. Traditionally such close-knit 
relationship is perceived as imbedded in a processional 
rhythm of improvised and itinerant dynamics; often oscil-
lating between resistance and conformity.  In this evolving 
system of spontaneous interconnections, creative traces 
and heterogeneity reside and thrive. It was not until the age 
of the machine that a wider distance between the hand, the 
instrument and the medium was created. The industrial rev-
olution did not only challenge the notion of personal affinity 
in crafts, but more critically emphasized the homogeneity of 
output which resides at the opposite end of craftsmanship. 

Today, the emerging digital, fabrication and information 
technologies are once again transforming the way in which 
buildings and artifacts are conceived, communicated, crafted 
and experienced. While mediating the distance back to a 
personal space, the change from atoms to bits is challenging 
the direct entanglement of crafts with material culture. The 
shift from the physical to the virtual is shaping new ways of 
thinking and making, while forcing a higher degree of imbed-
ded submission to the tool’s logic. Unfortunately, the role 
that digital instrumentations play in conforming our physi-
cal, virtual and perceptual realities is rarely at the center of 
investigation.

While, the use of digital media is steadily redefining design 
reasoning patterns within architectural discourse, the 
computer as a machine is still seen as the ‘black box’. It’s 
operating logic and architecture remains a mystery to most 
users in the field. Unfortunately, designers are often unaware 
of the impact that the tool’s specific architecture, logic and 
workflow has on design ideation and reasoning.  This blind 
dependency is causing many challenges; provoking critical 
debates concerning the effect of the digitally-driven ideations 
on architectural products and discourse. Today a robust and 
a comprehensive framework underpinning the integration 
of digital media into architectural pedagogy and practice is 
urgently needed. It is therefore critical that we take a critical 
look at the digital environment and to unmask what is actively 
redefining design reasoning patterns within architectural 
discourse.

BACKGROUND
It is widely recognized that different representational medi-
ums facilitate different facets of information processing 
during design (Cook 2008). Critical distinctions between 
ill-structured representations (i.e. freehand sketching, dia-
gramming, etc.) and well-structured representations, (i.e. 
digital representations, computation, etc.) are clearly marked, 
each stimulating different aspects of the cognitive faculties.  
For centuries, hand-drawn representations have been used 
to bridge the gap between the internal mental images and the 
external world (Gross et al. 1988, Herbert 1988, Goel 1992, 
Goel 1995, Eastman 2001). Today Architectural discourse is 
undergoing a fundamental change regarding its design media, 
in which well-structured digital representations (i.e. CAD 
drawings, 3D digital Models, rendered views, computational 
models, etc.) are rapidly replacing the ill-structured hand-
drawn representations (i.e. sketches, diagrams, perspective 

Digital Conformity 

RIMA AJLOUNI
University of Utah



The Ethical Imperative 351

drawings, etc.).  While the cognitive properties of hand draw-
ing have been extensively explored in the design process 
(Evans 1986, Van Sommers 1984), a deeper understanding 
of the cognitive aspects associated with using the digital envi-
ronment is still unclear. 

THE DIGITAL ENVIRONMENT
In 1945 John Von Neumann introduced the basic design 
principles of the digital computing environment.  Neumann 
proposed an electronic digital device that “can carry out 
instructions to perform calculations. The instructions 
which govern this operation must be given to the device 
in absolutely exhaustive detail. They include all numerical 
information which is required to solve the problem under 
consideration” (Neumann 1945 pp1). Neumann proposed 
that all numeric values are translated into machine language 
using a binary digits (bits) of the two values “0” and “1”, in 
which, the “bit” constitutes the smallest measuring unit for 
computer memory.  According to these principles, the digital 
environment operates by processing a numerical ‘input’ using 
arithmetical and/or logical operations to produces numerical 
‘output’.  This process follows a linear ‘fetch-execute’ cycle, 
in which instructions are executed in a consecutive order. 
Accordingly, in order to perform any task using the digital 
environment, the problem needs to be described as algorith-
mic conversation between input and output (Denning 2009). 
Therefore, in design contexts, the question of ‘computability’ 
of the problem becomes critical to its digital execution. The 
rationalization of the design problem by means of digital elec-
tronics necessitates that the problem be constructed in terms 
of computable functions between input and output (Kotnik 
2010), has an algorithmic solution and can be measured quan-
titatively.   Therefore, it is essential to understand the nature 
of the design problem before adopting a digitally-driven pro-
cess in search for solutions. 

THE NATURE OF THE DESIGN PROBLEM
Our understanding of design as a cognitive paradigm has 
evolved over time; moving away from identifying design as 
an objective rational problem solving process (Simon and 
Newell 1958, Newell 1969, Newell and Simon 1972, Simon 
1987), towards a new realization that identifies design as 
involving a complex and dynamic processes that are over-
whelmingly subjective in nature (Schön 1983). In this new 
realization, a strong correlation exists between three cog-
nitive aspects: the nature of the design problem under 
investigation (well-defined vs. ill-defined), the nature of the 
supporting knowledge structure (factual, informal, proce-
dural, experiential, representational, etc.) and the nature of 
design representations (ill-structured representations (i.e. 
freehand sketching, diagramming, etc.) vs. well-structured 
representations (i.e. digital representations, computation, 
etc.).  Cognitive sciences make a clear distinction between 
the cognitive processes associated with two types of design 
problems: an ill-defined design problem vs. a well-defined 

design problem; each activating different patterns of reason-
ing during design processing.  A well-defined design problem 
mandates that all necessary information needed for defining 
the problem is available before initiating the search for pos-
sible solutions.  This definition operates within an objective 
rational problem solving sphere, in which design thinking 
involves the process of searching for solutions that satisfy 
the predefined problem space. In this context, a well-defined 
design problem draws heavily upon objective sources of 
knowledge including formal, factual and procedural, while 
mainly benefiting from well-structured representations, such 
as digital and computational models.   On the other hand, an 
ill-defined design problem operates within an undetermined 
problem sphere, in which the information necessary to con-
struct the problem is lacking at the outset (Simon 1973, Goel 
1992). Such design process is overwhelmingly immersed in 
subjective interpretation and draws upon implicit knowledge 
structure including experiential, social and cultural, as well 
as benefiting from ill-structured design representations to 
stimulate design dialogue. 

The architectural design process encompasses a dualistic 
nature involving both objective and subjective interpretations 
(Gadamer 1986, Goel 1992, Dorst 2004). The initial phases 
of a design process are mostly characterized as ill-defined 
nature and rely on subjective interpretations to facilitate the 
lateral movement between multiple ideas; allowing a wider 
creative space for innovation (Eastman 2001, Dorst 1997, 
Dorst 2004, Goel 1992). Moving vertically in the depth of 
the design problem, design interpretations shifts to a more 
structured refinement and detailing toward a well-defined 
problem space.  The later stages of the architectural design 
process are often immersed in objective interpretations, 
which responds better to well-structured representations 
such as digital and computational modeling.  

A prerequisite for using the digital electronic system as a 
design tool, is understanding the “necessary limitation on 
computable functions as mediator between input and out-
put” (Kotnik 2010, pp 6). Therefore, in the context of the 
design process, the use of digital instrumentation mandates 
that the problem be abstracted numerically and rationalized 
using deductive reasoning logic using precise arithmetic and/
or logical expressions. It is therefore critical to understand 
that employing well-structured representations such as digi-
tal and computational modeling at early design exploration 
phases can obstruct the lateral search for alternative solu-
tions, which can result in a premature crystallization of the 
design (Goel 1992). Moreover, similar to reading, writing, 
sketching and math skills, any learned external digital rep-
resentation needs to be internalized in order to be effective 
part of the intrinsic cognitive mental reasoning skills (Eastman 
2001).  Therefore, in order to facilitate the creative process 
during design reasoning, digital skills need to be absorbed 
and internalized at a cognitive level (Akin & Akin 1998).
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ARCHITECTURE PEDAGOGY AND DIGITAL 
INSTRUMENTATION
In architectural pedagogy, students are increasingly required 
to learn and utilize a range of different digital tools to inform 
their design process without a proper understanding of their 
internal algorithms or operating logic. Table 1 lists an array 
of the most commonly utilized digital instrumentations in 
architecture schools today. While these tools offer multiple 
spheres for creative exploration, they are fundamentally 
redefining design reasoning patterns within architectural 
discourse.  Without an understanding of such impact, design 
pedagogies risk causing cognitive and technical challenges; 
potentially driving the educational experience out of focus.  In 
order to understand what is deriving architectural pedagogy 
and practice today, this paper looks behind the digital inter-
face and discusses three main aspects: (1) Programming and 
graphical platforms. (2) Graphic representations and model-
ing techniques and (3) digitally-driven design logic. 

PROGRAMMING AND GRAPHICAL PLATFORMS
To understand the architecture behind any of the digital 
tools, it is beneficial to look at the underlying programming 
logic and graphical platforms. Table 1 lists the different pro-
gramming languages and graphical libraries that are used in 
crafting most of the digital instrumentations in architecture 
today.  In general, the purpose of a programing language is 
to provide a formal method for instructing the computer to 
perform certain tasks using very specific syntax (form) to 
convey specific semantics (meaning). However, programing 
languages do not provide a library for graphic representa-
tions, therefore a graphical library is needed to provide the 
geometric primitives for building the graphical interactive 
components within the software. If we survey the digital tools 
in table 1, we find that 100% of these instrumentations utilize 
the same free OpenGl graphical Library and almost 87% of 
the programming logic rely heavily on C++ object-oriented 
programming to craft their functionalities.  

C++, which was developed by Bjarne Stroustrup in 1983 as an 
extension of the C language, is one of the most powerful and 
fast mid-level programming languages that is commonly used 
for crafting Graphic User Interface (GUI) based applications 

including advanced graphical software and gaming engines. 
C++ is an object-oriented, data centered programming which 
allows data and behavior to be encapsulated to create user-
defined date types. For example, instead of writing a code 
for a general shape-drawing function, which might be very 
expensive in terms of storage space, the programmer can 
declare a class of shape object, in which every individual 
object is optimized in term of its drawing function.  The pro-
grammer can then evoke the appropriate object’s drawing 
function when needed. In general, class declaration in C++ 
provides “strong typing, data hiding and code reuse through 
inheritance” (Pohl 1999 pp2), which can be best used to 
achieve modular-programming. 

The OpenGl Graphic Library, on the other hand, is an interface 
to graphics hardware that allows the creation of 2D and 3D 
visual interactive programs using rendered images.  Its library 
includes 250 distinct commands that are used to describe 
2D and 3D objects (Shreiner et al. 2005). For example, the 
OpenGl Utility Toolkit (GLUT) includes routines for drawing 
many of the 3D object found in architectural drawing soft-
ware, including the box, the sphere, the torus, the cone, and 
even the famous Utah teapot. Most critically, OpenGl allows 
programmers to manipulate geometry using three basic mod-
eling transformations: glTranslatef(tx, ty, tz), glRotatef(angle, 
vx, vy, vz) and glScalef( x, y, z). This suggests that any geomet-
ric manipulation using this digital platform is confined within 
these three transformation routines. The fact that almost all 
digital tools in architecture are structured based on the same 
object oriented logic and use the same basic graphic library 
raises important questions regarding the level of imbedded 
uniformity that comes with using these common platforms. 

GRAPHIC REPRESENTATIONS AND MODELING 
TECHNIQUES 
In digital graphics there are two types of representations, 
raster and vector. Raster images store data as a matrix of 
individual pixels with a fixed resolution (height and width), 
which cannot be enlarged without sacrificing image quality.  
The raster files are used in all image manipulation software 
including Photoshop and ImageReady and are often used to 
process images for rendering 3D architectural views.  With 
the ability to use advanced material and lighting, rendering 
engines allow designers to view their designs as direct visual 
experience that is readily interpreted as “realistic” (Turkle 

Table 1: Programming and graphical platforms used to craft digital 
instrumentations.
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2009), which engage very different cognitive processes than 
orthographic abstract projections (Scheer 2014). While these 
‘realistic” views are often accepted as accurate reflections of 
reality (Sontag 1977), the implications of the absence of the 
creative cognitive distance that facilitates abstractions during 
design processing are still unclear.

In vector data, geometric shapes are defined with coordi-
nates (2D (x,y) or 3D (x,y,z)). Every point is saved in a matrix 
of 2D or 3D array and manipulated mathematically through 
arithmetic operations (addition, subtraction, multiplication 
and division). Complicated scenes are built from basic geo-
metrical primitives (i.e. points, lines, curves, polygons). While 
almost 94% of architectural software utilize vector graphics 
to describe and manipulate geometry (table 2), it is rarely 
that designers are exposed to the mathematical calcula-
tions of vector geometry hidden behind the digital interface. 
While understandings these principles can be instrumental 
in enabling a better control over design representations and 
geometric manipulation, unfortunately Math and Calculus 
requirements are gradually taking the back seat in architec-
tural education. 

MODELING TECHNIQUES 
In the 3D modeling environment, there are two main 
approaches for modelling geometry (i.e. subdivision sur-
faces (Polygonal Mesh, and NURBS (Non-Uniform Rational 
B-Spline), each enabling a different geometric language for 
crafting architecture. A polygonal mesh model is a collec-
tion of joined polygons that are explicitly represented by a 
list of vertex coordinates. In this method a curve is defined 
by a collection of points connecting line segments along 
its length. Any complicated surface can be smoothed by 
recursively subdividing it to smaller segments. The use of 
recursive functions for smoothing complicated geometry 
has proven to be most valuable for crafting and animating 
characters and primarily used in the gaming and animation 
industries. 

The NURBS modeling method, on the other hand defines a 
curve or a surface by a parametric function utilizing only few 
control points around its vicinity. The curvilinear geometry 
changes based on manipulating the location of the control 
vertices around it.  The development of the computational 
curve and the basis behind the NURBS geometry was 
chiefly driven by the automotive and aerospace industries 

as a response to their need for a common mathematical 
language to model smooth curvilinear surfaces used in 
computer numerically controlled (CNC) manufacturing 
(Townsend, 2014).  In 1959, working for the French auto-
motive company Citroen, the mathematician Paul de Faget 
de Casteljau developed the first algorithm for computing 
a curve using few control points (Casteljau, 1999). In the 
1966 Pierre Bezier, an engineer working for the French 
automotive company Renault, invented the Bezier curve, 
which is used in many graphic software like Adobe illustrator 
(Bézier 1998). The B-Splines, a more accurate controllable 
algorithm was discovered by Carl de Boor, a researcher at 
GM automotive company (Boor 1978). Later the aerospace 
industry, namely Boeing, was instrumental in devising a 
general geometrical model that could be used to describe 
all types of complex free-form curves and surfaces and was 
called the Non-Uniform Rational Basis Splines (Blomgren 
and Kasik 2002).   These advances were later adopted by 
the mainstream computing communities and integrated 
into software applications for many of the design fields.  

In the past few years the popularity of the NURBS modeling 
has increased in architecture, mostly due to the adoption of 
NURBS-based software (i.e. Maya, Rhinoceros, CATIA, etc.). 
This has led to the emergence of a new language of “digi-
tal architecture” that is based on complex geometry and 
organic freeform typology. As a result, complicated forms 
and arbitrary exotic complexities are steadily streaming 
out of architectural schools. While the NURBS geometry 
has proven to be very beneficial for testing and modeling 
fluid surfaces based on aerodynamic principles for the 
automotive and aerospace industries, in architectural 
design however, the rationalization of the NURBS freeform 
geometry for production and construction has been very 
challenging and largely unsubstantiated. Few architects 
were able to overcome these limitations (i.e. Zaha Hadid, 
Frank Gehry, etc.), however these one-off projects were 
proven to be very complicated and expensive to con-
ceive and fabricate (Townsend, 2014). In 1999 the term 
“Blobitecture” was coined; referring to the adoption of 
amorphous, blob-like organic topology used in shaping the 
new language of contemporary architecture.  The advances 
in the NURB modeling coupled with availability of the com-
puter-aided manufacturing (CAM) allowed designers to 
move away from the Cartesian space and embrace the new 
topological vocabulary; forming an experimental paradigm 
of “form finding” largely driven by the manipulation of topo-
logical geometries available within the digital tool palette 
(i.e. stretching, folding, bending, etc.). 

Table 2: Graphic representations and modeling techniques used in digital 
instrumentations.
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Today many proponents of the “digital architecture” are 
promoting the “Blob” vocabulary into the main stream 
design domain (Lynn 1999), however the consideration for 
the human condition is largely missing from this proposition.  
With the democratization of complex free-form and fluid-like 
blob architecture, corners, edges, boundaries, orthogonal 
and Euclidean geometry are gradually dissolving into the 
fluidity of this new language of architecture.  It is therefore 
critical that we ask “how does this new environmental lan-
guage respond to the human condition?” 

In 2014, three neuroscientists won the Nobel Prize for their 
discoveries of brain cells (place cells, grid cells, head direc-
tion cells and boundary cells) that constitute a positioning 
system in the brain (Richard 2014). Amazingly, our brain 
maps the environment by firing signals based on a perfect 
hexagonal symmetry. It has been established that the brain’s 
GPS system is largely influenced by the shape of the environ-
ment (Richard 2014, Krupic, et al. 2015), in which the brain’s 
positioning functions are sharpened with orthogonal and 
symmetrical environments.  The lack of edges, corners and 
finite boundaries can have an irreversible negative impact 
on the development of essential navigating functions of the 
brain (Krupic, et al. 2015) and ultimately affect our ability to 
function in a space.   The blind adoption of digitally-driven 
architectural languages without a proper understanding of 
their impact on our physical and perceptual realities raises 
many ethical questions about the responsibility of the archi-
tect to uphold the minimum ethical standards for responding 
to the human condition. 

DIGITALLY-DRIVEN DESIGN LOGIC
The rationalization of design thinking in terms of digital com-
putation requires designers to logically abstract the design 
problem in terms of input, algorithmic conversation and out-
put. Accordingly, the degree of ‘computability’ of the design 
intent is closely linked to the computational reasoning logic 
that is used to derive design alternatives. In this context, 
three levels of digitally-driven modeling logic are defined:  
descriptive (output-driven), parametric (relationship-driven), 
and generative (process-driven). 

The descriptive design logic is an output-driven process, in 
which the designer is utilizing the digital environment for 
modeling a preconceived geometry; focusing primarily on 

the desired output rather than design manipulation at the 
algorithmic level (Oxman 2006, Kotnik 2010).  The range of 
the digital environments that are used for descriptive model-
ing is wide and includes all available CAD modeling software 
(table 3). However, using available software mandates that 
design representations be confined within a limited set of 
predefined geometric functions, which limits the geometric 
manipulations to a specific tool pallet and have no control 
over internal function definitions.  In this context, the use 
of programming languages provides a method to break free 
from the limitations associated with using existing tools. 
For example, figure 1 shows a predefine Circle command 
from the Rhino tool pallet (left) and an independently writ-
ten Circle function using C++ and OpenGl library (middle).   
The Rhino Circle command and the Circle function draw a 
circle using two parameters; a center location (x,y) and a 
radius (rad). However, while the rhino command limits the 
designer’s control to only manipulating the center position 
of the circle and the radius, the independently written Circle 
function allows control over the function definition, which 
enables access to the algorithmic level including the number 
of circle segments, variation of the radius, etc. (right). The 
ability to manipulate and craft independent functions allows 
the designers a wider space for exploration and control over 
geometric manipulation.

The parametric design logic is a relationship-driven design 
logic, in which design intent is encoded in a predefined set 
of relationships and parameters as a conversation between 
input and output following a deductive reasoning logic. In this 
process a geometric model is expressed in a set of parametric 
functions (equations), in which variations of the dependent 
‘output’ are generated based on testing ranges of variations 
across the independent ‘input’ parameter(s).  Parametric 
design reasoning is informed by mathematical formulas for 
testing performative or formative output(s), which frame the 
design problem and solution within a quantitative perspec-
tive and can potentially steer the creative energy towards 
optimization (Kotnik 2010).  Accordingly, parametric logic can 
only operate within a well-defined design problem sphere; 
which risks confining the ‘design space’ to a fixed field of 
explicit relationships as well as narrowing the ‘solution space’ 
to a limited range of possibilities. Moreover, available CAD 
graphic software (table 3), are not designed to facilitate 
parametric explorations at the algorithmic level. Therefore, 
knowledge of programming languages is needed to extend 

Table 3: Digitally-driven design logic vs. digital instrumentations.
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the functionality of existing tools and to enable parametric 
manipulations. 

The generative design logic, requires that design intent to 
be encoded in sequences of processes that are structured to 
evolve independently beyond the designer’s initial input. In 
this evolutionary perspective, design output(s) emerge as a 
global response to the intensive processes at the local level.  
The interaction among local entities give rise to the collective 
global behavior. In architectural design, generative thinking 
logic is seen as an experimental domain for exploring behav-
ioral-driven form-intelligence at an abstract level, which is 
more about phenomena recognition than a formal design 
method. Such exploration is currently focused on abstracting 
complex systems from nature (i.e. genetic algorithms, flock-
ing, cellular automaton, etc.) and adopting them as design 
generators. However, it is not clear how the geometric output 
responds to the initial design intent, in which an objective 
evaluating criteria can be challenging. Moreover, knowledge 
of programming languages and formal scientific knowledge 
are essential for deploying the generative computational 
design reasoning logic. 

CONCLUSION
Based on this review, it is evident that beyond the variations 
in the digital interface, most of the  digital instrumentations 
used in architecture today share the same operating logic, 
graphical platform and geometric principles. This fact raises 
important questions about the level of conformity that 
comes with using these common platforms. Moreover, the 
integration of the digital environment into the design process 
mandates that the design problem be quantitatively defined 
in an explicit arithmetic form before initiating the search for 
numeric solutions. While such design environments provide 
many creative spheres for exploration and optimization, 
this quantitative perspective on design is not structured to 
explore ideas, to make connections between society and the 
built environment or most critically to bring the consideration 

of human condition to bear during design. Instead, the inbuilt 
emphasis on geometric manipulation and quantitative opti-
mization can unintentionally steer the designer’s attention 
away from the qualitative aspects of design. 

Unfortunately, architecture profession is rarely involved in 
developing the digital instrumentations or graphical concepts 
that it uses. Architectural curriculum rarely offers opportuni-
ties to look behind the interface and understand its abstract 
logic or geometric principles. The lack of the essential 
knowledge that enables the designer to have cognitive and 
technical control over the tool’s limitations and possibilities 
risks confining the design exploration to the tool’s limited 
pallet as well as be bounded by the designer’s level of techni-
cal skills. It is critical to recognize that the use of the digital 
instrumentations in architecture discourse affect the human 
condition on multiple levels, including cognitive, technical, 
perceptual and physical. What is urgently needed today is a 
comprehensive framework underpinning the integration of 
digital environment into architectural discourse that enables 
the digital architects to regain control over the tool and the 
medium, to contemplate diversity of considerations in their 
designs, and most critically to bring the human considerations 
back into balance with those of efficiency and optimization. 
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