
350 On the Advantages and Disadvantages of the Instrumentality for Architecture

In architectural design, profound changes to the nature
of design instrumentations are challenging firmly-held
assumptions about the relationship between the design
ideation and its representation. For centuries, hand-drawn
representations have been used to facilitate the cognitive
dialogue; bridging the gap between the internal mental
images and the external physical world. Today, archi-
tectural discourse is rapidly embracing digital mediums,
through which designs are conceived and communicated
via controlled digital lenses. While these digital environ-
ments offer multitude of creative spheres for exploration,
the change from atoms to bits is shaping new ways of think-
ing and making while forcing a higher degree of imbedded
submission to the tool’s logic. Unfortunately, the role that
digital instrumentations play in conforming our physical,
virtual and perceptual realities is rarely at the center of
investigation. It is therefore critical to look behind the
digital interface and to unmask what is redefining design
reasoning patterns within architectural discourse. To con-
tribute to this critical discussion, this paper investigates the
operating logic, graphic platforms and geometric principles
behind most of the commonly used digital software in
architecture today. This survey shows that the overwhelm-
ing majority of digital tools utilize the same programming
and graphical platforms, which raises critical questions
about the level of imbedded conformity. Most critically,
the geometric concepts used in shaping the contemporary
language of architecture are chiefly derived by the abilities
and limitations of the software itself and rarely substanti-
ated by architectural theory or intellectual discourse, in
which the human consideration is largely missing.

INTRODUCTION
Throughout history the intimate relationship between the
craftsman hand, the instrument and the medium has always
been in constant negotiations. Traditionally such close-knit
relationship is perceived as imbedded in a processional
rhythm of improvised and itinerant dynamics; often oscil-
lating between resistance and conformity. In this evolving
system of spontaneous interconnections, creative traces
and heterogeneity reside and thrive. It was not until the age
of the machine that a wider distance between the hand, the
instrument and the medium was created. The industrial rev-
olution did not only challenge the notion of personal affinity
in crafts, but more critically emphasized the homogeneity of
output which resides at the opposite end of craftsmanship.

Today, the emerging digital, fabrication and information
technologies are once again transforming the way in which
buildings and artifacts are conceived, communicated, crafted
and experienced. While mediating the distance back to a
personal space, the change from atoms to bits is challenging
the direct entanglement of crafts with material culture. The
shift from the physical to the virtual is shaping new ways of
thinking and making, while forcing a higher degree of imbed-
ded submission to the tool’s logic. Unfortunately, the role
that digital instrumentations play in conforming our physi-
cal, virtual and perceptual realities is rarely at the center of
investigation.

While, the use of digital media is steadily redefining design
reasoning patterns within architectural discourse, the
computer as a machine is still seen as the ‘black box’. It’s
operating logic and architecture remains a mystery to most
users in the field. Unfortunately, designers are often unaware
of the impact that the tool’s specific architecture, logic and
workflow has on design ideation and reasoning. This blind
dependency is causing many challenges; provoking critical
debates concerning the effect of the digitally-driven ideations
on architectural products and discourse. Today a robust and
a comprehensive framework underpinning the integration
of digital media into architectural pedagogy and practice is
urgently needed. It is therefore critical that we take a critical
look at the digital environment and to unmask what is actively
redefining design reasoning patterns within architectural
discourse.

BACKGROUND
It is widely recognized that different representational medi-
ums facilitate different facets of information processing
during design (Cook 2008). Critical distinctions between
ill-structured representations (i.e. freehand sketching, dia-
gramming, etc.) and well-structured representations, (i.e.
digital representations, computation, etc.) are clearly marked,
each stimulating different aspects of the cognitive faculties.
For centuries, hand-drawn representations have been used
to bridge the gap between the internal mental images and the
external world (Gross et al. 1988, Herbert 1988, Goel 1992,
Goel 1995, Eastman 2001). Today Architectural discourse is
undergoing a fundamental change regarding its design media,
in which well-structured digital representations (i.e. CAD
drawings, 3D digital Models, rendered views, computational
models, etc.) are rapidly replacing the ill-structured hand-
drawn representations (i.e. sketches, diagrams, perspective

Digital Conformity

RIMA AJLOUNI
University of Utah

The Ethical Imperative 351

drawings, etc.). While the cognitive properties of hand draw-
ing have been extensively explored in the design process
(Evans 1986, Van Sommers 1984), a deeper understanding
of the cognitive aspects associated with using the digital envi-
ronment is still unclear.

THE DIGITAL ENVIRONMENT
In 1945 John Von Neumann introduced the basic design
principles of the digital computing environment. Neumann
proposed an electronic digital device that “can carry out
instructions to perform calculations. The instructions
which govern this operation must be given to the device
in absolutely exhaustive detail. They include all numerical
information which is required to solve the problem under
consideration” (Neumann 1945 pp1). Neumann proposed
that all numeric values are translated into machine language
using a binary digits (bits) of the two values “0” and “1”, in
which, the “bit” constitutes the smallest measuring unit for
computer memory. According to these principles, the digital
environment operates by processing a numerical ‘input’ using
arithmetical and/or logical operations to produces numerical
‘output’. This process follows a linear ‘fetch-execute’ cycle,
in which instructions are executed in a consecutive order.
Accordingly, in order to perform any task using the digital
environment, the problem needs to be described as algorith-
mic conversation between input and output (Denning 2009).
Therefore, in design contexts, the question of ‘computability’
of the problem becomes critical to its digital execution. The
rationalization of the design problem by means of digital elec-
tronics necessitates that the problem be constructed in terms
of computable functions between input and output (Kotnik
2010), has an algorithmic solution and can be measured quan-
titatively. Therefore, it is essential to understand the nature
of the design problem before adopting a digitally-driven pro-
cess in search for solutions.

THE NATURE OF THE DESIGN PROBLEM
Our understanding of design as a cognitive paradigm has
evolved over time; moving away from identifying design as
an objective rational problem solving process (Simon and
Newell 1958, Newell 1969, Newell and Simon 1972, Simon
1987), towards a new realization that identifies design as
involving a complex and dynamic processes that are over-
whelmingly subjective in nature (Schön 1983). In this new
realization, a strong correlation exists between three cog-
nitive aspects: the nature of the design problem under
investigation (well-defined vs. ill-defined), the nature of the
supporting knowledge structure (factual, informal, proce-
dural, experiential, representational, etc.) and the nature of
design representations (ill-structured representations (i.e.
freehand sketching, diagramming, etc.) vs. well-structured
representations (i.e. digital representations, computation,
etc.). Cognitive sciences make a clear distinction between
the cognitive processes associated with two types of design
problems: an ill-defined design problem vs. a well-defined

design problem; each activating different patterns of reason-
ing during design processing. A well-defined design problem
mandates that all necessary information needed for defining
the problem is available before initiating the search for pos-
sible solutions. This definition operates within an objective
rational problem solving sphere, in which design thinking
involves the process of searching for solutions that satisfy
the predefined problem space. In this context, a well-defined
design problem draws heavily upon objective sources of
knowledge including formal, factual and procedural, while
mainly benefiting from well-structured representations, such
as digital and computational models. On the other hand, an
ill-defined design problem operates within an undetermined
problem sphere, in which the information necessary to con-
struct the problem is lacking at the outset (Simon 1973, Goel
1992). Such design process is overwhelmingly immersed in
subjective interpretation and draws upon implicit knowledge
structure including experiential, social and cultural, as well
as benefiting from ill-structured design representations to
stimulate design dialogue.

The architectural design process encompasses a dualistic
nature involving both objective and subjective interpretations
(Gadamer 1986, Goel 1992, Dorst 2004). The initial phases
of a design process are mostly characterized as ill-defined
nature and rely on subjective interpretations to facilitate the
lateral movement between multiple ideas; allowing a wider
creative space for innovation (Eastman 2001, Dorst 1997,
Dorst 2004, Goel 1992). Moving vertically in the depth of
the design problem, design interpretations shifts to a more
structured refinement and detailing toward a well-defined
problem space. The later stages of the architectural design
process are often immersed in objective interpretations,
which responds better to well-structured representations
such as digital and computational modeling.

A prerequisite for using the digital electronic system as a
design tool, is understanding the “necessary limitation on
computable functions as mediator between input and out-
put” (Kotnik 2010, pp 6). Therefore, in the context of the
design process, the use of digital instrumentation mandates
that the problem be abstracted numerically and rationalized
using deductive reasoning logic using precise arithmetic and/
or logical expressions. It is therefore critical to understand
that employing well-structured representations such as digi-
tal and computational modeling at early design exploration
phases can obstruct the lateral search for alternative solu-
tions, which can result in a premature crystallization of the
design (Goel 1992). Moreover, similar to reading, writing,
sketching and math skills, any learned external digital rep-
resentation needs to be internalized in order to be effective
part of the intrinsic cognitive mental reasoning skills (Eastman
2001). Therefore, in order to facilitate the creative process
during design reasoning, digital skills need to be absorbed
and internalized at a cognitive level (Akin & Akin 1998).

352 On the Advantages and Disadvantages of the Instrumentality for Architecture

ARCHITECTURE PEDAGOGY AND DIGITAL
INSTRUMENTATION
In architectural pedagogy, students are increasingly required
to learn and utilize a range of different digital tools to inform
their design process without a proper understanding of their
internal algorithms or operating logic. Table 1 lists an array
of the most commonly utilized digital instrumentations in
architecture schools today. While these tools offer multiple
spheres for creative exploration, they are fundamentally
redefining design reasoning patterns within architectural
discourse. Without an understanding of such impact, design
pedagogies risk causing cognitive and technical challenges;
potentially driving the educational experience out of focus. In
order to understand what is deriving architectural pedagogy
and practice today, this paper looks behind the digital inter-
face and discusses three main aspects: (1) Programming and
graphical platforms. (2) Graphic representations and model-
ing techniques and (3) digitally-driven design logic.

PROGRAMMING AND GRAPHICAL PLATFORMS
To understand the architecture behind any of the digital
tools, it is beneficial to look at the underlying programming
logic and graphical platforms. Table 1 lists the different pro-
gramming languages and graphical libraries that are used in
crafting most of the digital instrumentations in architecture
today. In general, the purpose of a programing language is
to provide a formal method for instructing the computer to
perform certain tasks using very specific syntax (form) to
convey specific semantics (meaning). However, programing
languages do not provide a library for graphic representa-
tions, therefore a graphical library is needed to provide the
geometric primitives for building the graphical interactive
components within the software. If we survey the digital tools
in table 1, we find that 100% of these instrumentations utilize
the same free OpenGl graphical Library and almost 87% of
the programming logic rely heavily on C++ object-oriented
programming to craft their functionalities.

C++, which was developed by Bjarne Stroustrup in 1983 as an
extension of the C language, is one of the most powerful and
fast mid-level programming languages that is commonly used
for crafting Graphic User Interface (GUI) based applications

including advanced graphical software and gaming engines.
C++ is an object-oriented, data centered programming which
allows data and behavior to be encapsulated to create user-
defined date types. For example, instead of writing a code
for a general shape-drawing function, which might be very
expensive in terms of storage space, the programmer can
declare a class of shape object, in which every individual
object is optimized in term of its drawing function. The pro-
grammer can then evoke the appropriate object’s drawing
function when needed. In general, class declaration in C++
provides “strong typing, data hiding and code reuse through
inheritance” (Pohl 1999 pp2), which can be best used to
achieve modular-programming.

The OpenGl Graphic Library, on the other hand, is an interface
to graphics hardware that allows the creation of 2D and 3D
visual interactive programs using rendered images. Its library
includes 250 distinct commands that are used to describe
2D and 3D objects (Shreiner et al. 2005). For example, the
OpenGl Utility Toolkit (GLUT) includes routines for drawing
many of the 3D object found in architectural drawing soft-
ware, including the box, the sphere, the torus, the cone, and
even the famous Utah teapot. Most critically, OpenGl allows
programmers to manipulate geometry using three basic mod-
eling transformations: glTranslatef(tx, ty, tz), glRotatef(angle,
vx, vy, vz) and glScalef(x, y, z). This suggests that any geomet-
ric manipulation using this digital platform is confined within
these three transformation routines. The fact that almost all
digital tools in architecture are structured based on the same
object oriented logic and use the same basic graphic library
raises important questions regarding the level of imbedded
uniformity that comes with using these common platforms.

GRAPHIC REPRESENTATIONS AND MODELING
TECHNIQUES
In digital graphics there are two types of representations,
raster and vector. Raster images store data as a matrix of
individual pixels with a fixed resolution (height and width),
which cannot be enlarged without sacrificing image quality.
The raster files are used in all image manipulation software
including Photoshop and ImageReady and are often used to
process images for rendering 3D architectural views. With
the ability to use advanced material and lighting, rendering
engines allow designers to view their designs as direct visual
experience that is readily interpreted as “realistic” (Turkle

Table 1: Programming and graphical platforms used to craft digital
instrumentations.

The Ethical Imperative 353

2009), which engage very different cognitive processes than
orthographic abstract projections (Scheer 2014). While these
‘realistic” views are often accepted as accurate reflections of
reality (Sontag 1977), the implications of the absence of the
creative cognitive distance that facilitates abstractions during
design processing are still unclear.

In vector data, geometric shapes are defined with coordi-
nates (2D (x,y) or 3D (x,y,z)). Every point is saved in a matrix
of 2D or 3D array and manipulated mathematically through
arithmetic operations (addition, subtraction, multiplication
and division). Complicated scenes are built from basic geo-
metrical primitives (i.e. points, lines, curves, polygons). While
almost 94% of architectural software utilize vector graphics
to describe and manipulate geometry (table 2), it is rarely
that designers are exposed to the mathematical calcula-
tions of vector geometry hidden behind the digital interface.
While understandings these principles can be instrumental
in enabling a better control over design representations and
geometric manipulation, unfortunately Math and Calculus
requirements are gradually taking the back seat in architec-
tural education.

MODELING TECHNIQUES
In the 3D modeling environment, there are two main
approaches for modelling geometry (i.e. subdivision sur-
faces (Polygonal Mesh, and NURBS (Non-Uniform Rational
B-Spline), each enabling a different geometric language for
crafting architecture. A polygonal mesh model is a collec-
tion of joined polygons that are explicitly represented by a
list of vertex coordinates. In this method a curve is defined
by a collection of points connecting line segments along
its length. Any complicated surface can be smoothed by
recursively subdividing it to smaller segments. The use of
recursive functions for smoothing complicated geometry
has proven to be most valuable for crafting and animating
characters and primarily used in the gaming and animation
industries.

The NURBS modeling method, on the other hand defines a
curve or a surface by a parametric function utilizing only few
control points around its vicinity. The curvilinear geometry
changes based on manipulating the location of the control
vertices around it. The development of the computational
curve and the basis behind the NURBS geometry was
chiefly driven by the automotive and aerospace industries

as a response to their need for a common mathematical
language to model smooth curvilinear surfaces used in
computer numerically controlled (CNC) manufacturing
(Townsend, 2014). In 1959, working for the French auto-
motive company Citroen, the mathematician Paul de Faget
de Casteljau developed the first algorithm for computing
a curve using few control points (Casteljau, 1999). In the
1966 Pierre Bezier, an engineer working for the French
automotive company Renault, invented the Bezier curve,
which is used in many graphic software like Adobe illustrator
(Bézier 1998). The B-Splines, a more accurate controllable
algorithm was discovered by Carl de Boor, a researcher at
GM automotive company (Boor 1978). Later the aerospace
industry, namely Boeing, was instrumental in devising a
general geometrical model that could be used to describe
all types of complex free-form curves and surfaces and was
called the Non-Uniform Rational Basis Splines (Blomgren
and Kasik 2002). These advances were later adopted by
the mainstream computing communities and integrated
into software applications for many of the design fields.

In the past few years the popularity of the NURBS modeling
has increased in architecture, mostly due to the adoption of
NURBS-based software (i.e. Maya, Rhinoceros, CATIA, etc.).
This has led to the emergence of a new language of “digi-
tal architecture” that is based on complex geometry and
organic freeform typology. As a result, complicated forms
and arbitrary exotic complexities are steadily streaming
out of architectural schools. While the NURBS geometry
has proven to be very beneficial for testing and modeling
fluid surfaces based on aerodynamic principles for the
automotive and aerospace industries, in architectural
design however, the rationalization of the NURBS freeform
geometry for production and construction has been very
challenging and largely unsubstantiated. Few architects
were able to overcome these limitations (i.e. Zaha Hadid,
Frank Gehry, etc.), however these one-off projects were
proven to be very complicated and expensive to con-
ceive and fabricate (Townsend, 2014). In 1999 the term
“Blobitecture” was coined; referring to the adoption of
amorphous, blob-like organic topology used in shaping the
new language of contemporary architecture. The advances
in the NURB modeling coupled with availability of the com-
puter-aided manufacturing (CAM) allowed designers to
move away from the Cartesian space and embrace the new
topological vocabulary; forming an experimental paradigm
of “form finding” largely driven by the manipulation of topo-
logical geometries available within the digital tool palette
(i.e. stretching, folding, bending, etc.).

Table 2: Graphic representations and modeling techniques used in digital
instrumentations.

354 On the Advantages and Disadvantages of the Instrumentality for Architecture

Today many proponents of the “digital architecture” are
promoting the “Blob” vocabulary into the main stream
design domain (Lynn 1999), however the consideration for
the human condition is largely missing from this proposition.
With the democratization of complex free-form and fluid-like
blob architecture, corners, edges, boundaries, orthogonal
and Euclidean geometry are gradually dissolving into the
fluidity of this new language of architecture. It is therefore
critical that we ask “how does this new environmental lan-
guage respond to the human condition?”

In 2014, three neuroscientists won the Nobel Prize for their
discoveries of brain cells (place cells, grid cells, head direc-
tion cells and boundary cells) that constitute a positioning
system in the brain (Richard 2014). Amazingly, our brain
maps the environment by firing signals based on a perfect
hexagonal symmetry. It has been established that the brain’s
GPS system is largely influenced by the shape of the environ-
ment (Richard 2014, Krupic, et al. 2015), in which the brain’s
positioning functions are sharpened with orthogonal and
symmetrical environments. The lack of edges, corners and
finite boundaries can have an irreversible negative impact
on the development of essential navigating functions of the
brain (Krupic, et al. 2015) and ultimately affect our ability to
function in a space. The blind adoption of digitally-driven
architectural languages without a proper understanding of
their impact on our physical and perceptual realities raises
many ethical questions about the responsibility of the archi-
tect to uphold the minimum ethical standards for responding
to the human condition.

DIGITALLY-DRIVEN DESIGN LOGIC
The rationalization of design thinking in terms of digital com-
putation requires designers to logically abstract the design
problem in terms of input, algorithmic conversation and out-
put. Accordingly, the degree of ‘computability’ of the design
intent is closely linked to the computational reasoning logic
that is used to derive design alternatives. In this context,
three levels of digitally-driven modeling logic are defined:
descriptive (output-driven), parametric (relationship-driven),
and generative (process-driven).

The descriptive design logic is an output-driven process, in
which the designer is utilizing the digital environment for
modeling a preconceived geometry; focusing primarily on

the desired output rather than design manipulation at the
algorithmic level (Oxman 2006, Kotnik 2010). The range of
the digital environments that are used for descriptive model-
ing is wide and includes all available CAD modeling software
(table 3). However, using available software mandates that
design representations be confined within a limited set of
predefined geometric functions, which limits the geometric
manipulations to a specific tool pallet and have no control
over internal function definitions. In this context, the use
of programming languages provides a method to break free
from the limitations associated with using existing tools.
For example, figure 1 shows a predefine Circle command
from the Rhino tool pallet (left) and an independently writ-
ten Circle function using C++ and OpenGl library (middle).
The Rhino Circle command and the Circle function draw a
circle using two parameters; a center location (x,y) and a
radius (rad). However, while the rhino command limits the
designer’s control to only manipulating the center position
of the circle and the radius, the independently written Circle
function allows control over the function definition, which
enables access to the algorithmic level including the number
of circle segments, variation of the radius, etc. (right). The
ability to manipulate and craft independent functions allows
the designers a wider space for exploration and control over
geometric manipulation.

The parametric design logic is a relationship-driven design
logic, in which design intent is encoded in a predefined set
of relationships and parameters as a conversation between
input and output following a deductive reasoning logic. In this
process a geometric model is expressed in a set of parametric
functions (equations), in which variations of the dependent
‘output’ are generated based on testing ranges of variations
across the independent ‘input’ parameter(s). Parametric
design reasoning is informed by mathematical formulas for
testing performative or formative output(s), which frame the
design problem and solution within a quantitative perspec-
tive and can potentially steer the creative energy towards
optimization (Kotnik 2010). Accordingly, parametric logic can
only operate within a well-defined design problem sphere;
which risks confining the ‘design space’ to a fixed field of
explicit relationships as well as narrowing the ‘solution space’
to a limited range of possibilities. Moreover, available CAD
graphic software (table 3), are not designed to facilitate
parametric explorations at the algorithmic level. Therefore,
knowledge of programming languages is needed to extend

Table 3: Digitally-driven design logic vs. digital instrumentations.

The Ethical Imperative 355

the functionality of existing tools and to enable parametric
manipulations.

The generative design logic, requires that design intent to
be encoded in sequences of processes that are structured to
evolve independently beyond the designer’s initial input. In
this evolutionary perspective, design output(s) emerge as a
global response to the intensive processes at the local level.
The interaction among local entities give rise to the collective
global behavior. In architectural design, generative thinking
logic is seen as an experimental domain for exploring behav-
ioral-driven form-intelligence at an abstract level, which is
more about phenomena recognition than a formal design
method. Such exploration is currently focused on abstracting
complex systems from nature (i.e. genetic algorithms, flock-
ing, cellular automaton, etc.) and adopting them as design
generators. However, it is not clear how the geometric output
responds to the initial design intent, in which an objective
evaluating criteria can be challenging. Moreover, knowledge
of programming languages and formal scientific knowledge
are essential for deploying the generative computational
design reasoning logic.

CONCLUSION
Based on this review, it is evident that beyond the variations
in the digital interface, most of the digital instrumentations
used in architecture today share the same operating logic,
graphical platform and geometric principles. This fact raises
important questions about the level of conformity that
comes with using these common platforms. Moreover, the
integration of the digital environment into the design process
mandates that the design problem be quantitatively defined
in an explicit arithmetic form before initiating the search for
numeric solutions. While such design environments provide
many creative spheres for exploration and optimization,
this quantitative perspective on design is not structured to
explore ideas, to make connections between society and the
built environment or most critically to bring the consideration

of human condition to bear during design. Instead, the inbuilt
emphasis on geometric manipulation and quantitative opti-
mization can unintentionally steer the designer’s attention
away from the qualitative aspects of design.

Unfortunately, architecture profession is rarely involved in
developing the digital instrumentations or graphical concepts
that it uses. Architectural curriculum rarely offers opportuni-
ties to look behind the interface and understand its abstract
logic or geometric principles. The lack of the essential
knowledge that enables the designer to have cognitive and
technical control over the tool’s limitations and possibilities
risks confining the design exploration to the tool’s limited
pallet as well as be bounded by the designer’s level of techni-
cal skills. It is critical to recognize that the use of the digital
instrumentations in architecture discourse affect the human
condition on multiple levels, including cognitive, technical,
perceptual and physical. What is urgently needed today is a
comprehensive framework underpinning the integration of
digital environment into architectural discourse that enables
the digital architects to regain control over the tool and the
medium, to contemplate diversity of considerations in their
designs, and most critically to bring the human considerations
back into balance with those of efficiency and optimization.

REFERENCES
1 Akin, Ö. and Akin, C. 1998. “On the process of creativity in puzzles, inventions,

and designs.” Automation in Construction 7 (2–3): 123-138.

2 Bézier, Pierre. 1998. “A View of the CAD/CAM Development Period.” IEEE
Annals of the History of Computing 20(2): 37-40.

3 Blomgren, Robert M. and Kasik, David J. 2002. “Early investigation, formulation
and use of NURBS at Boeing.” ACM SIGGRAPH Computer Graphics 36 (3): 27-32.

4 Boor, de Carl. 1978. A Practical Guide to Splines. Carl de Boor’s Homepage.
Retrieved from: http://pages.cs.wisc.edu/~deboor/

5 Casteljau, Paul de Faget. 1999. “De Casteljau’s autobiography: My time at
Citroën.” Computer Aided Geometric Design, 16(7): 583–586.

6 Cook, Peter. 2008. Drawing: The Motive Force of Architecture. (Chichester: John
Wiley & Sons Ltd.)

7 Denning, Peter J. 2009. “The Profession of IT: Beyond Computational thinking,”
Communications of the ACM. 52(6): 28-30.

8 Dorst, C.H. 1997. Describing Design - a Comparison of Paradigms, thesis
TUDelft.

9 Dorst, K. 2004. “The Problem of Design Problems - Problem Solving and Design
Expertise.” Journal of Design Research 4(2).

10 Eastman C. 1969. “Cognitive processes and ill-defined problems: a case

Figure 1: Left: the Rhino Circle command. Middle: Circle function written
in C++ and OpenGl library. Right: Manipulations of the C++ Circle function.

356 On the Advantages and Disadvantages of the Instrumentality for Architecture

study from design.” In D.E. Walker & L. M. Norton (eds), Proceedings Joint
International Conference on Artificial Intelligence: 669–690. Bedford, MA: The
Mitre Corporation.

11 Eastman, C. 2001. New Directions in Design Cognition: Studies of
Representation and Recall. In C. Eastman, M. McCracken & W. Newstetter (eds),
Design Knowing and Learning: Cognition in Design Education; Amsterdam:
Elsevier Science: 147-198.

12 Evans, Robin. 1986. Translations from Drawing to Building. AA Files
(Architectural Association School of Architecture) 12: 3-18.

13 Gadamer, H. G. 1986. The Relevance of the Beautiful and Other Essays. R.
Bernasconi & N. Walker (eds). Cambridge: Cambridge University Press.

14 Goel, V. 1992. “Ill-structured Representations for Ill-structured Problems.” The
Fourteenth Annual Conference of the Cognitive Science Society. Hillsdale, NJ.
Lawrence Erlbaum.

15 Goel, V. 1995. Sketches of Thought. Cambridge, MA: MIT Press.

16 Gross, M.D., Ervin, S.M., Anderson, J.A. and Fleischer, A. 1988. “Constraints:
knowledge representation in design.” Design Studies 9(3): 133-143.

17 Herbert, D.M. 1988. “Study Drawings in Architectural Design: Their Properties
as a Graphic Medium.” Journal of Architectural Education 41(2): 26-38.

18 Kotnik, T. 2010. “Digital Architectural Design as Exploration of Computable
Functions.” in International Journal of Architectural Computing 08(1): 1-16

19 Krupic, J., Burton, S., Barry C. and O’Keefe, J. 2015. “Grid cell symmetry is
shaped by environmental geometry.” Nature 518: 232–235.

20 Lynn, G. 1999. Animate Form. Princeton: Princeton University Press.

21 Neumann, V. 1945. First Draft of a Report on the EDVAC. University of
Pennsylvania. https://web.archive.org. Accessed on Jan 05 2016.

22 Newell A. 1969. Heuristic Programming: Ill-structured Problems. In Julius
Aronofsky (ed.), Progress in Operations Research 3: 360-414. John Wiley &
Sons.

23 Newell, A. & Simon, H. A. 1972. Human Problem Solving. (Englewood Cliffs. NJ:
Prentice Hall).

24 Oxman, R. 2006. “Theory and Design in the First Digital Age.” Design Studies
27(3): 229-265.

25 Pohl, I. 1999. C++ for C Programmers. Third Edition. Reading, Massachusetts:
Addison-Wesley.

26 Richard, Van N. 2014. “Nobel for microscopy that reveals inner world of cells.
Three scientists used fluorescent molecules to defy the limits of conventional
optical microscopes.” Nature 514: 286.

27 Scheer, David Ross. 2014. The Death of Drawing: Architecture in the Age of
Simulation. (New York and London: Routledge Taylor & Francis Group).

28 Schön, D. 1983. The Reflective Practitioner: How Professionals Think in Action.
New York: Basic Books.

29 Shreiner, D. Woo, M. Neider, J. and Davis, T. 2005. OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Version 2, Fifth Edition.
Addison-Wesley.

30 Simon, H. & Newell, A. 1958. “Heuristic Problem Solving: The Next Advance in
Operations Research.” Operations Research 6(1):1-10.

31 Simon, H. 1973. “The Structure of Ill-structured problems,” Artificial
Intelligence 4:181-203.P

32 Simon, H. 1987. Problem forming, problem finding, and problem solving in
design. In A. Collen & W. W. Gasparski (eds.), Design and Systems: General
Applications of methodology 3: 245-257. New Brunswick, NJ: Transaction
Publishers.

33 Sontag, Susan. On Photography. New York: Picador, 1977.

34 Townsend, A. 2014. “One the Spline: A Brief History of the Computational
Curve.” Applied Geometries 3.

35 Turkle, Sherry. 2009. Simulation and its Discontents. (Cambridge: The MIT
Press).

36 Van Sommers, Peter. 1984. Drawing and Cognition: Descriptive and
Experimental Studies of Graphic Production Processes. Cambridge: Cambridge
University Press.

